New England Dinghy Championship

HostHarvard
DateApril 14-15, 2012
TypeConference Championship Regatta
BoatFJ
ScoringFleet

Summary

Saturday, April 14:

12 races were sailed in each division. A-division sailed in the Harvard fleet and B sailed in the MIT fleet. The westerly gradient breeze suffered from inconsistent velocity early in the day, but steadied as the day wore on. All races were course W-4. There will be a redress hearing for race 3-B at 9:40am on Sunday. Many thanks to the Harvard sailors who helped with the race management and scoring. They are Will White, Gram Slattery, Michael Drumm, Ben Lamont, and Reid Bergsund. We also owe much gratitude to our judges for keeping everyone honest. They are Kerry Sullivan, John Moulthrop, Jeff Dusek, Chris Petracco and Jamie Ewing.

Sunday, April 15:

The conditions on Sunday were similar to Saturday with an unstable westerly ranging from 2-6 knots early in the day. The velocity became steadier in the 4-8 knot range later in the day. The racing was incredibly close right up to the very end. Congratulations to Harvard, Roger Williams, Yale, Dartmouth,Boston College, Boston University, Tufts and Brown for qualifying for the Semifinal Round of the ICSA Dinghy National Championship. Many Thanks to our judges today, John Moulthrop, Josh Leighton and Jamie Ewing. Thanks to the Harvard Team for helping with the regatta. Particular thanks to Will White, Mike Drumm and Gram Slattery for their help on the water.

Score summary

SchoolTeamABTOT
1HARHarvard UniversityCrimson110121231
2RWRoger Williams UniversityHawks132108240
3YALYale UniversityBulldogs141109250
4DARTDartmouth CollegeBig Green141117258
5BCBoston CollegeEagles128133261
6BUBoston UniversityTerriers162105267
7TUFTufts UniversityJumbos158114272
*8BRBrown UniversityBears117157274
*9MITMassachusetts Institute of TechnologyEngineers114160274
10URIUniversity of Rhode IslandRams145166311
11CCConnecticut CollegeCamels192139331
12UVMUniversity of VermontCatamounts208141349
13SRSalve Regina UniversitySeahawks137255392
14BOWBowdoin CollegePolar Bears231203434
15CGAU. S. Coast Guard AcademyBears235246481
16NUNortheastern UniversityHuskies239249488
17MMAMaine Maritime AcademyMariners224290514
18WESWesleyan UniversityCardinals268264532
Sym.Explanation
*Head-to-head tiebreaker

Score history

The following chart shows the relative rank of the teams as of the race indicated. Note that the races are ordered by number, then division, which may not represent the order in which the races were actually sailed.

The first place team as of a given race will always be at the top of the chart. The spacing from one team to the next shows relative gains/losses made from one race to the next. You may hover over the data points to display the total score as of that race.

The first place team as of a given race will always be at the top of the chart. The spacing from one team to the next shows relative gains/losses made from one race to the next. The legend is listed in order of rank as of last race. Nodes specify the score as of that race for that team.Wesleyan CardinalsRunning winner1A1B2A2B3A3B4A4B5A5B6A6B7A7B8A8B9A9B10A10B11A11B12A12B13A13B14A14B15A15B16A16B17A17B18A18BRankHarvard CrimsonRoger Williams HawksYale BulldogsDartmouth Big GreenBoston College EaglesBoston University TerriersTufts JumbosBrown BearsMIT EngineersRhode Island RamsConnecticut College CamelsVermont CatamountsSalve Regina SeahawksBowdoin Polar BearsCoast Guard BearsNortheastern HuskiesMaine Maritime MarinersWesleyan Cardinals7(7)1(8)RAF(27)5(32)8(40)10(50)1(51)1(52)3(55)4(59)2(61)4(65)11(76)9(85)16(101)6(107)6(113)12(125)4(129)8(137)5(142)5(147)7(154)6(160)3(163)11(174)4(178)10(188)3(191)12(203)DSQ(222)12(234)2(236)11(247)8(255)6(261)12(12)7(19)10(29)7(36)17(53)11(64)17(81)12(93)18(111)6(117)8(125)16(141)12(153)13(166)1(167)16(183)15(198)8(206)15(221)14(235)11(246)15(261)15(276)4(280)16(296)14(310)17(327)12(339)13(352)15(367)16(383)14(397)12(409)9(418)6(424)10(434)4(4)8(12)1(13)12(25)7(32)1(33)8(41)11(52)7(59)1(60)6(66)12(78)1(79)14(93)9(102)3(105)2(107)14(121)7(128)4(132)18(150)8(158)6(164)7(171)10(181)8(189)3(192)6(198)12(210)11(221)5(226)10(236)10(246)14(260)1(261)13(274)10(10)5(15)13(28)4(32)11(43)8(51)DSQ(70)2(72)8(80)2(82)7(89)9(98)2(100)11(111)6(117)2(119)3(122)4(126)10(136)2(138)1(139)14(153)18(171)1(172)9(181)15(196)13(209)3(212)14(226)1(227)10(237)7(244)6(250)1(251)2(253)RDG(267)6(6)15(21)4(25)10(35)14(49)DNF(68)10(78)6(84)10(94)13(107)5(112)3(115)7(122)4(126)5(131)1(132)13(145)10(155)18(173)1(174)12(186)11(197)13(210)5(215)14(229)3(232)16(248)11(259)15(274)4(278)1(279)8(287)13(300)10(310)16(326)5(331)17(17)18(35)15(50)13(63)DSQ(82)16(98)11(109)17(126)12(138)12(150)17(167)15(182)8(190)10(200)8(208)12(220)17(237)7(244)14(258)12(270)10(280)17(297)1(298)14(312)18(330)13(343)10(353)16(369)9(378)13(391)15(406)11(417)16(433)13(446)18(464)17(481)2(2)11(13)3(16)1(17)15(32)6(38)6(44)10(54)11(65)9(74)4(78)2(80)4(84)3(87)17(104)4(108)4(112)16(128)5(133)11(144)8(152)13(165)12(177)8(185)12(197)2(199)1(200)2(202)5(207)2(209)14(223)9(232)4(236)4(240)14(254)4(258)3(3)2(5)2(7)11(18)2(20)3(23)12(35)4(39)5(44)7(51)14(65)5(70)10(80)18(98)10(108)11(119)7(126)9(135)3(138)5(143)7(150)2(152)5(157)10(167)8(175)5(180)2(182)1(183)1(184)8(192)11(203)5(208)1(209)7(216)7(223)8(231)11(11)4(15)6(21)16(37)3(40)2(42)2(44)13(57)9(66)11(77)9(86)14(100)6(106)2(108)11(119)13(132)1(133)13(146)11(157)10(167)2(169)9(178)8(186)3(189)2(191)12(203)11(214)14(228)8(236)6(242)3(245)4(249)8(257)2(259)3(262)RDG(274)14(14)17(31)12(43)15(58)12(70)RAF(89)3(92)18(110)15(125)10(135)18(153)18(171)5(176)15(191)12(203)18(221)16(237)17(254)16(270)16(286)15(301)10(311)10(321)16(337)7(344)18(362)6(368)18(386)18(404)18(422)12(434)18(452)18(470)18(488)15(503)11(514)15(15)13(28)14(42)17(59)6(65)14(79)14(93)14(107)16(123)14(137)16(153)17(170)16(186)8(194)14(208)15(223)18(241)6(247)17(264)18(282)3(285)7(292)14(306)9(315)17(332)17(349)7(356)17(373)17(390)14(404)4(408)16(424)14(438)15(453)17(470)18(488)1(1)12(13)8(21)9(30)10(40)5(45)7(52)9(61)6(67)16(83)3(86)1(87)3(90)5(95)7(102)9(111)8(119)1(120)1(121)9(130)9(139)1(140)16(156)12(168)13(181)4(185)5(190)4(194)11(205)5(210)2(212)1(213)17(230)3(233)5(238)2(240)9(9)14(23)9(32)14(46)4(50)12(62)9(71)15(86)1(87)18(105)12(117)13(130)13(143)17(160)4(164)14(178)12(190)18(208)9(217)17(234)4(238)18(256)3(259)11(270)5(275)16(291)12(303)8(311)7(318)16(334)13(347)2(349)7(356)17(373)4(377)15(392)8(8)9(17)7(24)2(26)9(35)7(42)4(46)3(49)17(66)5(71)10(81)8(89)17(106)6(112)2(114)7(121)10(131)2(133)2(135)6(141)6(147)6(153)9(162)2(164)11(175)1(176)9(185)5(190)4(194)9(203)9(212)13(225)11(236)16(252)13(265)7(272)5(5)10(15)11(26)8(34)5(39)9(48)5(53)7(60)4(64)8(72)1(73)7(80)14(94)12(106)15(121)5(126)11(137)3(140)6(146)7(153)13(166)12(178)4(182)13(195)6(201)10(211)15(226)13(239)10(249)10(259)6(265)15(280)5(285)5(290)9(299)12(311)16(16)6(22)17(39)6(45)16(61)15(76)13(89)8(97)13(110)3(113)15(128)11(139)15(154)7(161)13(174)8(182)5(187)11(198)12(210)15(225)17(242)3(245)11(256)15(271)4(275)6(281)14(295)9(304)6(310)3(313)8(321)6(327)3(330)6(336)10(346)3(349)18(18)16(34)16(50)18(68)13(81)13(94)15(109)16(125)14(139)17(156)11(167)10(177)18(195)16(211)18(229)17(246)14(260)15(275)13(288)13(301)14(315)16(331)17(348)18(366)15(381)9(390)18(408)15(423)16(439)17(456)17(473)17(490)9(499)12(511)12(523)9(532)13(13)3(16)5(21)3(24)1(25)4(29)16(45)5(50)2(52)15(67)13(80)6(86)9(95)1(96)3(99)10(109)9(118)5(123)8(131)3(134)16(150)4(154)2(156)17(173)1(174)7(181)8(189)7(196)2(198)7(205)7(212)3(215)15(230)8(238)11(249)1(250)